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Abstract: We investigate how K2’s changing projected separation during its proposed microlensing
campaign, from 0.1 AU to 0.8 AU, impacts its ability to return high-impact science. We find that K2’s
separations are almost optimal for free floating planets (the main science driver) and very good for main-
sequence stars, particularly for main-sequence hosts of planets.
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1. INTRODUCTION
In our previous white paper, we argued broadly that
efficient microlens parallaxes require a projected sepa-
ration between two simultaneous observers of roughly 1
AU, and therefore require that the second observer be
a satellite in solar orbit. During the available observing
window (roughly 7 Apr – 29 Jun 2016) K2 will actually
vary from a minimum of about 0.1 AU to a maximum
of about 0.8 AU. Here we therefore address the question
of how this finite interval affects K2 science.

2. REVIEW OF RELEVANT EQUATIONS
Most microlensing events are fully characterized by just
3 parameters, t0 (time of peak), u0 (impact parameter
in units or the “Einstein radius” θE), and tE (Einstein
timescale),

tE =
θE

µ
; θ2

E = κMπrel; κ =
4G

c2AU
= 8.1

mas

M⊙

. (1)

Here πrel and µ are the lens-source relative parallax and
proper motion, respectively, and M is the lens mass.
Thus, M , πrel and µ are generally not known separately,
but only through the peculiar combination of them in
the observable tE.

The goal of a K2 microlensing mission is to measure
the “microlens parallax” πE,

πE = πE
µ

µ
; πE =

πrel

θE
(2)

If this quantity is measured, then (together with θE,
which is routinely measured in planetary microlensing
events) it yields

M =
θE

κπE
; πrel = θEπE. (3)

Then, since the source parallax πs is usually quite
well known, the lens distance can be determined Dl =
AU/(πrel + πs).

If the observer changes position by a vector distance
∆x, then the apparent separation of the lens and source
will change by ∆θ = (πrel/AU)∆x. Hence, the separa-
tion in the Einstein ring will change by

∆u =
∆θ

θE
=

πrel

θE

∆x

AU
= πE

∆x

AU
(4)
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Because a displacement ∆u in the Einstein ring leads to
measurable changes in magnification, and since ∆x is of
course known, such displaced observations can yield a
parallax measurement.

Note that even if θE is not measured, it can be esti-
mated to factor 1.5 accuracy (1 σ) from the fact that al-
most all microlensing events have roughly the same lens-
source relative proper motion, µtypical ∼ 4 mas yr−1,
to within a factor 1.5 (1 σ). Then we can estimate
θE,estimated = µtypicaltE,observed.

3. RULE OF THUMB
The “rule of thumb” for obtaining credible parallax in-
formation is

0.03 ! πE
∆x

AU
! 1 (5)

This equation invites two questions. First, how are the
boundaries established? Second how well does K2 sat-
isfy this equation for “typical events”?

The reason for the upper boundary is simple. The
microlensing magnification A is given (for point lenses)
by

A(u) =
u2 + 2

u
√

u2 + 4
, u(t) =

√

u2
0 +

(t − t0)2

t2E
(6)

Hence, this magnification dies off very quickly for u >
1, i.e. A(1, 1.5, 2, 2.5, 3) = (1.34, 1.13, 1.06, 1.03, 1.017)
Hence, if an event is seen from the Earth, then u0,⊕ ! 1
and so if πE∆x " 1 AU, then most likely u0,sat " 1
and hence it most likely will not be seen. Of course,
this boundary is not strict. First, if the trajectory hap-
pens to be well aligned with the Earth-satellite sepa-
ration vector, then both Earth and the satellite will
experience well characterized events even though they
are separated by over an Einstein radius. Second, for
bright sources (so excellent photometry), even very low-
amplitude events may be detected (particularly because
one knows to look for them from the presence of an event
in the other observatory (either Earth or satellite).

The other boundary is more approximate. For typi-
cal events, it is possible to measure u0 and t0 to 1% and
0.01 tE precision respectively from ground-based data.
Hence, if the difference in these parameters is 3% and/or
0.03 tE (and assuming that the continuous satellite ob-
servations will yield better data than the ground-based
data) then this will yield 3 σ measurements. In many
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cases, the situation is substantially more favorable. For
example if there are caustic crossings, these can usu-
ally be measured to precisions 10–100 times better. But
there are also less favorable cases, either high-u0 events
or those with poor signal-to-noise photometry. Finally,
of potential relevance (but actually turning out not to be
very important) is the fact that for short events such as
those caused by free-floating planets (FFPs), the preci-
sion is often worse, simply because there are fewer data
points.

4. VIABILITY OF K2 SEPARATIONS
Of course, real microlensing events are drawn from a
large continuous range of parameters. However, to un-
derstand the viability of the K2 range of separations,
we should consider a few typical cases. Hence, we
write down the same equation for πE but with four dif-
ferent normalizations. These relate to “typical hosts”
M = 0.5 M⊙ and “typical FFPs” M = 1 Mjup, and to
“typical disk lenses” πrel = 125 µas and “typical bulge
lenses” πrel = 10 µas.

πE = 4.00

√

πrel/125 µas

M/Mjup
= 1.13

√

πrel/10 µas

M/Mjup
(7)

πE = 0.18

√

πrel/125 µas

M/0.5 M⊙

= 0.05

√

πrel/10 µas

M/0.5 M⊙

(8)

The first point to consider is that there is no “one
size fits all”. Even these central values of different “typ-
ical” populations span a range of 4.00/0.05 = 80. This
is already larger than the factor ∼ 30 range of the
“rule of thumb” Equation (5). Thus, it is impossible
to fully capture these diverse phenomena from a sin-
gle Earth-satellite separation. To get a more concrete
sense of this, we evaluate the range of πE∆x for each of
the above four examples separately, using the K2 range
0.1 < ∆x/AU < 0.8

0.4 < πE
∆x

AU
< 3.2, (”disk FFP”) (9)

0.11 < πE
∆x

AU
< 1.0, (”bulge FFP”) (10)

0.02 < πE
∆x

AU
< 0.14, (”disk star”) (11)

0.005 < πE
∆x

AU
< 0.04 (”bulge star”) (12)

The principal science driver for K2 is FFPs. There-
fore we should begin by analyzing these. The situation
is best for bulge FFPs. For these, the anticipated range
of πE∆x/AU (0.11–1.0) is entirely contained within the
allowed range (from Equation (5)) (0.03 – 1.0). For
disk FFPs, the anticipated range (0.4–3.2) falls outside
the allowed range for relatively large Earth-satellite pro-
jected separations ∆x > 0.25AU. As mentioned above,
some of these will be recovered because the trajectory
direction is favorable. In other cases, there will only be a

lower limit on πE. This will be adequate to confirm them
as FFPs, but not to actually measure their mass. Fi-
nally note that because FFPs generally avoid the lower
boundary of πE∆x > 0.03 AU (set by smallness of the ef-
fect requiring high-precision photometry), there is never
any real problem due to the short timescales degrading
parameter measurement.

At the opposite extreme, bulge stellar lenses really re-
quire large Earth-satellite separations. For these lenses,
and for times when K2 has a short projected separa-
tion, one may only get an upper limit on πE and so
determine that it is a bulge lens, but not make a precise
mass measurement. However, it should be stressed that
from the standpoint of K2-microlensing science drivers,
the most interesting bulge stellar lenses will have caustic
crossings (due to binary or planetary companions) and
for these, precise measurements are possible even at 10
or 100 times smaller πE∆x. Finally, we note that disk
stellar lenses mostly fit into the “rule of thumb” range.

Another consideration is that the period of very short
Earth-K2 separation opens the possibility of detecting
Neptune-mass FFPs. These objects have πE that are
4.6 times larger than Jupiter-mass FFPs:

πE = 20

√

πrel/125 µas

M/MNep
= 5.2

√

πrel/10 µas

M/MNep
(13)

Hence, for separations ∆x = 0.1 AU, the bulge FFP-
Neptunes are clearly within range and the disk FFP-
Neptunes are plausibly within range for those events
with favorably oriented trajectories. Hence, the time
that K2 is at short baselines provides important discov-
ery potential for low-mass FFPs.

5. CONCLUSION
During the K2-microlensing campaign, K2 will be at
a range of projected separations spanning a factor ∼ 8.
Because of the factor ∼ 30 range in “acceptable” separa-
tions withing the Einstein ring (0.03–1 Einstein radii),
this range of physical projected separations makes K2
sensitive to a huge range of phenomena, from Neptune-
mass FFPs to main-sequence stars (including those with
planets), i.e., a factor 10,000 in mass. It is true that not
all phenomena can be probed at all separations, but the
overlap between required separations and K2’s actual
projected separation from Earth is remarkably good,
particularly for the highest-priority scientific targets.


